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Abstract

Data engineering is generally considered to be a central issue in the de-
velopment of data mining applications. The success of many learning
schemes, in their attempts to construct models of data, hinges on the
reliable identification of a small set of highly predictive attributes. The
inclusion of irrelevant, redundant and noisy attributes in the model build-
ing process phase can result in poor predictive performance and increased
computation.

Attribute selection generally involves a combination of search and at-
tribute utility estimation plus evaluation with respect to specific learning
schemes. This leads to a large number of possible permutations and has
led to a situation where very few benchmark studies have been conducted.

This paper presents a benchmark comparison of several attribute se-
lection methods. All the methods produce an attribute ranking, a useful
devise for isolating the individual merit of an attribute. Attribute selec-
tion is achieved by cross-validating the rankings with respect to a learning
scheme to find the best attributes. Results are reported for a selection of
standard data sets and two learning schemes C4.5 and naive Bayes.

1 Introduction

Many factors affect the success of data mining algorithms on a given task. The
quality of the data is one such factor—if information is irrelevant or redundant,
or the data is noisy and unreliable, then knowledge discovery during training
is more difficult. Attribute subset selection is the process of identifying and
removing as much of the irrelevant and redundant information as possible.
Learning algorithms differ in the amount of emphasis they place on attribute
selection. At one extreme are algorithms such as the simple nearest neighbour
learner, that classifies novel examples by retrieving the nearest stored training
example, using all the available features in its distance computations. At the
other extreme are algorithms that explicitly try to focus on relevant features and
ignore irrelevant ones. Decision tree inducers are examples of this approach.
By testing the values of certain attributes, decision tree algorithms attempt
to divide training data into subsets containing a strong majority of one class.
This necessitates the selection of a small number of highly predictive features
in order to avoid over fitting the training data. Regardless of whether a learner
attempts to select attributes itself or ignores the issue, attribute selection prior
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to learning can be beneficial. Reducing the dimensionality of the data reduces
the size of the hypothesis space and allows algorithms to operate faster and more
effectively. In some cases accuracy on future classification can be improved; in
others, the result is a more compact, easily interpreted representation of the
target concept.

Attribute selection as a preprocessing step to learning generally involves a
combination of search and attribute utility estimation. When the evaluation of
the selected features with respect to learning algorithms is considered as well
it leads to a large number of possible permutations. This fact, along with the
computational cost of some attribute selection techniques, has led to a situation
where very few benchmark studies have been conducted.

This paper helps to fill the void by providing a benchmark comparison of
attribute selection techniques that produce ranked lists of attributes. These
methods are not only useful for improving the performance of learning algo-
rithms; the rankings they produce can also provide the data miner with in-
sight into their data by clearly demonstrating the relative merit of individual
attributes. The next section describes the attribute selection techniques com-
pared in the benchmark. Section 3 outlines the experimental methodology used
and briefly describes the Weka Experiment Editor (a powerful Java based sys-
tem that was used to run the benchmarking experiments). Section 4 presents
the results. The last section summarizes the findings.

2 Attribute Selection Techniques

Attribute selection techniques can be categorized according to a number of cri-
teria. One popular categorization has coined the terms “filter” and “wrapper”
to describe the nature of the metric used to evaluate the worth of attributes
[7]. Wrappers evaluate attributes by using accuracy estimates provided by the
actual target learning algorithm. Filters, on the other hand, use general char-
acteristics of the data to evaluate attributes and operate independently of any
learning algorithm. Another useful taxonomy can be drawn by dividing algo-
rithms into those which evaluate (and hence rank) individual attributes and
those which evaluate (and hence rank) subsets of attributes. The latter group
can be split further on the basis of the search technique commonly employed
with each method to explore the space of attribute subsets1. Some attribute
selection techniques can handle regression problems, that is, when the class is a
numeric rather than discrete valued variable. This provides yet another dimen-
sion to categorize methods. Although some of the methods compared herein
are capable of handling regression problems, this study has been restricted to
discrete class data sets as all the methods are capable of handling this sort of
problem.

By focusing on techniques that rank attributes we have simplified the matter

1It is important to note that any search technique can be used with a method that eval-
uates attribute subsets and that many of the possible permutations that this leads to have
yet to be explored
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by reducing the number of possible permutations. That is not to say that we
have ignored those methods that evaluate subsets of attributes; on the contrary,
it is possible to obtain ranked lists of attributes from these methods by using
a simple hill climbing search and forcing it to continue to the far side of the
search space. For example, forward selection hill climbing search starts with
an empty set and evaluates each attribute individually to find the best single
attribute. It then tries each of the remaining attributes in conjunction with
the best to find the best pair of attributes. This process continues until no
single attribute addition improves the evaluation of the subset. By forcing the
search to continue (even though the best attribute added at each step may
actually decrease the evaluation of the subset as a whole) and by noting each
attribute as it is added, a list of attributes ranked according to their incremental
improvement to the subset is obtained.

The rest of this section is devoted to a brief description of each of the
methods compared in the benchmark. There are three methods that evaluate
individual attributes and produce a ranking unassisted, and a further three
methods which evaluate subsets of attributes. The forward selection search
method described above is used with these last three methods to produce ranked
lists of attributes. The methods cover major developments in attribute selection
for machine learning over the last decade. We also include a classical statistical
technique for dimensionality reduction.

2.1 Information Gain Attribute Ranking

This is one of the simplest (and fastest) attribute ranking methods and is often
used in text categorization applications [3] where the sheer dimensionality of
the data precludes more sophisticated attribute selection techniques. If A is an
attribute and C is the class, Equations 1 and 2 give the entropy of the class
before and after observing the attribute.

H(C) = −
∑

c∈C

p(c)log2p(c), (1)

H(C|A) = −
∑

a∈A

p(a)
∑

c∈C

p(c|a)log2p(c|a). (2)

The amount by which the entropy of the class decreases reflects the ad-
ditional information about the class provided by the attribute and is called
information gain [10].

Each attribute Ai is assigned a score based on the information gain between
itself and the class:

IGi = H(C) − H(C|Ai) (3)

= H(Ai) − H(Ai|C)

= H(Ai) + H(C) − H(Ai, C).
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Data sets with numeric attributes are first discretized using the method of
Fayyad and Irani [4].

2.2 Relief

Relief is an instance based attribute ranking scheme introduced by Kira and
Rendell [6] and later enhanced by Kononenko [8]. Relief works by randomly
sampling an instance from the data and then locating its nearest neighbour
from the same and opposite class. The values of the attributes of the nearest
neighbours are compared to the sampled instance and used to update relevance
scores for each attribute. This process is repeated for a user specified number
of instances m. The rationale is that a useful attribute should differentiate
between instances from different classes and have the same value for instances
from the same class.

Relief was originally defined for two-class problems and was later extended
(ReliefF) to handle noise and multi-class data sets [8]. ReliefF smoothes the
influence of noise in the data by averaging the contribution of k nearest neigh-
bours from the same and opposite class of each sampled instance instead of the
single nearest neighbour. Multi-class data sets are handled by finding nearest
neighbours from each class that is different from the current sampled instance
and weighting their contributions by the prior probability of each class.

2.3 Principal Components

Principal component analysis is a statistical technique that can reduce the di-
mensionality of data as a by-product of transforming the original attribute
space. Transformed attributes are formed by first computing the covariance
matrix of the original attributes, and then extracting its eigenvectors. The
eigenvectors (principal components) define a linear transformation from the
original attribute space to a new space in which attributes are uncorrelated.
Eigenvectors can be ranked according to the amount of variation in the original
data that they account for. Typically the first few transformed attributes ac-
count for most of the variation in the data and are retained, while the remainder
are discarded.

It is worth noting that of all the attribute selection techniques compared,
principal components is the only unsupervised method—that is, it makes no
use of the class attribute. Our implementation of principal components handles
k-valued discrete attributes by converting them to k binary attributes. This
has the disadvantage of increasing the dimensionality of the original space when
multi-valued discrete attributes are present.

2.4 CFS

CFS (Correlation-based Feature Selection) [5] is the first of the methods that
evaluate subsets of attributes rather than individual attributes. At the heart
of the algorithm is a subset evaluation heuristic that takes into account the
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usefulness of individual features for predicting the class along with the level of
intercorrelation among them. The heuristic (Equation 4) assigns high scores
to subsets containing attributes that are highly correlated with the class and
have low intercorrelation with each other.

Merits =
krcf

√

k + k(k − 1)rff

, (4)

where MeritS is the heuristic “merit” of a feature subset S containing k fea-
tures, rcf the average feature-class correlation, and rff the average feature-
feature intercorrelation. The numerator can be thought of as giving an indica-
tion of how predictive a group of features are; the denominator of how much
redundancy there is among them. The heuristic handles irrelevant features as
they will be poor predictors of the class. Redundant attributes are discrimi-
nated against as they will be highly correlated with one or more of the other
features.

In order to apply Equation 4 it is necessary to compute the correlation
(dependence) between attributes. CFS first discretizes numeric features using
the technique of Fayyad and Irani [4] and then uses symmetrical uncertainty
(essentially Equation 3 normalized by the entropy of the attributes involved)
to estimate the degree of association between discrete features.

2.5 Consistency-based Subset Evaluation

Several approaches to attribute subset selection use class consistency as an
evaluation metric [1, 9]. These methods look for combinations of attributes
whose values divide the data into subsets containing a strong single class ma-
jority. Usually the search is biased towards small feature subsets with high class
consistency. Our consistency-based subset evaluator uses Liu and Setiono’s [9]
consistency metric:

Consistencys = 1 −

∑J
i=0 |Di| − |Mi|

N
, (5)

where s is an attribute subset, J is the number of distinct combinations of
attribute values for s, |Di| is the number of occurrences of the ith attribute
value combination, |Mi| is the cardinality of the majority class for the ith
attribute value combination and N is the total number of instances in the data
set.

Data sets with numeric attributes are first discretized using the method of
Fayyad and Irani [4].

2.6 Wrapper Subset Evaluation

As described at the start of this section Wrapper attribute selection uses the
target learning algorithm to estimate the worth of attribute subsets. Cross-
validation is used to provide an estimate for the accuracy of a classifier on novel
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data when using only the attributes in a given subset. Our implementation uses
repeated five-fold cross-validation for accuracy estimation. Cross-validation is
repeated as long as the standard deviation over the runs is greater than one
percent of the mean accuracy or until five repetitions have been completed [7].

Wrappers generally give better results than filters because of the interaction
between the search and the learning scheme’s inductive bias. But improved
performance comes at the cost of computational expense—a result of having to
invoke the learning algorithm for every attribute subset considered during the
search.

3 Experimental Methodology

Our benchmark experiment applied the attribute selection techniques to sixteen
standard machine learning data sets from the UCI collection [2]. These data
sets and their characteristics are summarized in Table 1. In order to compare
the effectiveness of attribute selection, attribute sets chosen by each technique
were tested with two learning algorithms—a decision tree learner (C4.5 release
8) and a probabilistic learner (naive Bayes). These two algorithms were chosen
because they represent two quite different approaches to learning and they are
relatively fast, state-of-the-art algorithms that are often used in data mining
applications.

Table 1: Data sets.

Data Set Instances Num. Nom. Classes
1 glass-2 163 9 0 2
2 anneal 898 6 32 5
3 breast-c 286 0 9 2
4 credit-g 1000 7 13 2
5 diabetes 768 8 0 2
6 horse colic 368 7 15 2
7 heart-c 303 6 7 2
8 heart-stat 270 13 0 2
9 ionosphere 351 34 0 2
10 labor 57 8 8 2
11 lymph 148 3 15 4
12 segment 2310 19 0 7
13 soybean 683 0 35 19
14 vote 435 0 16 2
15 zoo 101 1 16 7

The percentage of correct classifications, averaged over ten ten-fold cross
validation runs, were calculated for each algorithm-data set combination be-
fore and after attribute selection. For each train-test split, the dimensionality
was reduced by each attribute selector before being passed to the learning al-
gorithms. Dimensionality reduction was accomplished by cross validating the
attribute rankings produced by each attribute selector with respect to the cur-
rent learning algorithm. That is, ten-fold cross validation on the training part
of each train-test split was used to estimate the worth of the highest ranked
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attribute, the first two highest ranked attributes, the first three highest ranked
attributes etc. The highest n ranked attributes with the best cross validated
accuracy was chosen as the best subset. For the attribute selection techniques
that require data pre-processing, a copy of each training split was made for them
to operate on. The same folds were used for each attribute selector-learning
scheme combination. Although final accuracy of the induced models using the
reduced feature sets was of primary interest, we also recorded statistics such as
the number of attributes selected, time taken to select attributes and the size
of the decision trees induced by C4.5.

3.1 Weka Experiment Editor

To perform the benchmark experiment we used Weka2 (Waikato Environment
for Knowledge Analysis)—a powerful open-source Java-based machine learning
workbench that can be run on any computer that has a Java run time environ-
ment installed. Weka brings together many machine learning algorithms and
tools under a common framework with an intuitive graphical user interface.
Weka has two primary modes: a data exploration mode and an experiment
mode. The Explorer provides easy access to all of Weka’s data preprocessing,
learning, attribute selection and data visualization modules in an environment
that encourages initial exploration of the data. The Experimenter allows large
scale experiments to be run with results stored in a database for later retrieval
and analysis. Figure 1 shows the configuration panel of the Experimenter.

4 Results

Table 2: Results for attribute selection with naive Bayes

Data Set NB IG RLF CNS PC CFS WRP
zoo 95.04 94.34 • 93.37 • 93.85 • 93.86 93.94 • 94.34
heart-c 83.83 82.54 • 82.12 • 82.28 • 81.85 • 82.64 • 82.68 •

ionosphere 82.6 88.78 ◦ 89.52 ◦ 89.95 ◦ 90.72 ◦ 89.75 ◦ 91.28 ◦

soybean 92.9 92.43 • 92.56 • 92.81 90.93 • 92.46 92.64
glass2 62.33 67.42 ◦ 63.83 ◦ 68.31 ◦ 66.74 ◦ 71.08 ◦ 75.06 ◦

vote 90.19 95.63 ◦ 95.33 ◦ 95.82 ◦ 92.32 ◦ 95.63 ◦ 95.93 ◦

heart-stat 84.37 85.11 86 ◦ 83.48 • 82.07 • 85.07 85
lymph 83.24 82.63 81.47 • 82.55 79.67 • 82.35 84.11
labor 93.93 89.17 • 90.97 • 92 • 89.77 • 89.2 • 85.77 •

diabetes 75.73 76.24 75.95 75.64 74.42 • 76.19 76.12
breast-c 73.12 72.84 70.99 • 71.79 73.54 73.01 72.28
credit-g 74.98 74.36 74.49 • 74.06 • 73.3 • 74.33 74.35
segment 80.1 87.17 ◦ 86.97 ◦ 85.98 ◦ 90.03 ◦ 89.03 ◦ 89.57 ◦

horse colic 78.28 83.2 ◦ 82.58 ◦ 82.77 ◦ 78.56 83.01 ◦ 82.61 ◦

anneal 86.51 87.06 ◦ 89.17 ◦ 89.71 ◦ 90.65 ◦ 87.16 92.91 ◦

◦, • statistically significant improvement or degradation

2http://www.cs.waikato.ac.nz/∼ml
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Figure 1: Weka Experimenter.

Table 3: Wins versus losses for accuracy of attribute selection with naive Bayes.

Scheme Wins− Wins Losses
Losses

WRP 30 34 4
CFS 7 21 14
CNS 2 21 19

IG -2 17 19
RLF -3 19 22
NB -7 28 35
PC -27 17 44

Table 2 shows the results for attribute selection with naive Bayes. The
table shows how often each method performs significantly better (denoted by
a ◦) or worse (denoted by a •) than performing no feature selection (column
2). Throughout we speak of results being significantly different if the difference
is statistically significant at the 1% level according to a paired two-sided t

test. From Table 2 it can be seen that the best result is from the Wrapper
which improves naive Bayes on six data sets and degrades it on two. CFS is
second best with improvement on five datasets and degradation on three. The
simple information gain technique (IG) results in six improvements and four
degradations. The consistency method (CNS) improves naive Bayes on six data
sets and degrades it on five. ReliefF gives better performance on seven data
sets but also degrades performance on seven. Principal components comes out
the worst with improvement on five data sets and degradation on seven.
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Table 3 ranks the attribute selection schemes. A pairwise comparison is
made between each scheme and all of the others. The number of times each
scheme is significantly more or less accurate than another is recorded and the
schemes are ranked by the total number of “wins” minus “losses”. From this
table it can be seen that the Wrapper is clearly the best with 34 wins and only
four losses against the other schemes. CFS and the consistency method are the
only other schemes that have more wins than losses.

Table 4: Results of attribute selection with C4.5

Data Set C4.5 IG CFS CNS RLF WRP PC
zoo 92.26 91.65 91.06 • 93.65 ◦ 92.95 90.45 • 91.49
heart-stat 78.67 84.52 ◦ 85.33 ◦ 84.11 ◦ 82 ◦ 82.11 ◦ 82.22 ◦

ionosphere 89.74 89.4 91.09 ◦ 91.05 91.43 91.8 ◦ 88.8
diabetes 73.74 73.92 73.67 73.71 73.58 73.5 71.51 •

vote 96.46 95.84 • 95.65 • 95.98 • 95.79 • 95.74 • 92.07 •

credit-g 71.18 72.72 72.99 ◦ 72.2 71.63 72.23 69.34 •

soybean 92.48 92.4 91.14 • 92.43 92.43 92.19 83.75 •

heart-c 76.64 78.95 ◦ 79.11 ◦ 80.23 ◦ 80.4 ◦ 77 82.65 ◦

glass2 77.97 78.35 78.53 77.05 79.53 76.53 66.41 •

labor 80.2 80.6 81 79.73 79.53 78.33 88.6 ◦

lymph 75.5 73.09 • 73.41 75.43 76.83 76.63 74.6
breast-c 73.87 73.75 73.7 72.24 • 72.77 73.43 70.62 •

segment 96.9 96.81 96.94 96.87 96.89 96.92 93.95 •

anneal 98.58 98.72 98.47 98.65 98.73 98.66 96.26 •

horse colic 85.44 84.18 • 83.94 • 84 • 84.9 84.14 • 78.18 •

◦, • statistically significant improvement or degradation

Table 5: Wins versus losses for accuracy of attribute selection with C4.5

Scheme Wins− Wins Losses
Losses

RLF 15 22 7
CNS 12 20 8
C4.5 7 23 16
CFS 5 21 16

WRP 5 17 12
IG 2 15 13
PC -46 12 58

Table 4 shows the results for attribute selection with C4.5 and Table 5 shows
the “wins” minus “losses” ranking for each scheme when compared against the
others. The results are somewhat different than for naive Bayes. The best
scheme for C4.5 is ReliefF which improves C4.5’s performance on two data sets
and degrades it on one. It is also top of the ranking with 22 wins and only
seven losses against the other schemes. Consistency is the only other scheme
that is ranked higher than using no feature selection with C4.5; it improves
C4.5’s performance on three data sets and degrades performance on three data
sets. CFS and the Wrapper are tied at fourth in the ranking. CFS improves
C4.5’s performance on four data sets (more than any other scheme) but also
degrades performance on four datasets. The Wrapper improves performance
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on two datasets and degrades performance on three.
The success of ReliefF and consistency with C4.5 could be attributable

to their ability to identify attribute interactions (dependencies). Including
strongly interacting attributes in a reduced subset increases the likelihood that
C4.5 will discover and use interactions early on in tree construction before
the data becomes too fragmented. Naive Bayes, on the other hand, is un-
able to make use of interacting attributes because of its attribute independence
assumption. Two reasons could account for the poorer performance of the
Wrapper with C4.5. First, the nature of the search (forward selection) used to
generate the ranking can fail to identify strong attribute interactions early on,
with the result that the attributes involved are not ranked as highly as they
perhaps should be. The second reason has to do with the Wrapper’s attribute
evaluation—five fold cross validation on the training data. Using cross valida-
tion entails setting aside some training data for evaluation with the result that
less data is available for building a model.

Table 6: Size of trees produced by C4.5 with and without attribute selection.

Data Set C4.5 IG CFS CNS RLF WRP PC
zoo 15.64 13.22 ◦ 13.74 ◦ 13.44 ◦ 13.04 ◦ 13.98 ◦ 13.02 ◦

heart-stat 34.84 12.12 ◦ 11.98 ◦ 13.52 ◦ 13.66 ◦ 14.92 ◦ 4.82 ◦

ionosphere 26.58 21.84 ◦ 16.64 ◦ 17.14 ◦ 17.22 ◦ 13.9 ◦ 20.04 ◦

diabetes 41.54 14.62 ◦ 15.92 ◦ 16.54 ◦ 16.74 ◦ 17.06 ◦ 30.52 ◦

vote 10.64 9.44 ◦ 8.64 ◦ 9.92 ◦ 9 ◦ 9.72 ◦ 20.44 •

credit-g 125.05 57.34 ◦ 60.39 ◦ 61.82 ◦ 68.52 ◦ 63.48 ◦ 10.98 ◦

soybean 92.27 86.5 ◦ 88.29 ◦ 92.25 91.21 90.75 88.84
heart-c 42.34 19.72 ◦ 19.45 ◦ 22.48 ◦ 23.17 ◦ 24.2 ◦ 8.16 ◦

glass2 23.78 14.88 ◦ 16.28 ◦ 16.26 ◦ 17.12 ◦ 16.22 ◦ 11.18 ◦

labor 6.96 6.22 ◦ 6.1 ◦ 6.18 ◦ 5.48 ◦ 6.13 ◦ 5.88 ◦

lymph 27.41 14.71 ◦ 14.35 ◦ 12.26 ◦ 14.56 ◦ 14.43 ◦ 18.18 ◦

breast-c 12.38 10.47 10.26 15.09 11.8 8.42 ◦ 7.72 ◦

segment 81.86 80.82 80.26 79.44 ◦ 80.96 79.5 119 •

anneal 49.75 48.45 50.06 46.83 ◦ 46.73 ◦ 48.63 38.94 ◦

horse colic 8.57 21.18 • 25.75 • 8.81 20.64 • 20.9 • 6.42 ◦

◦, • statistically significant improvement or degradation

Table 7: Wins versus losses for C4.5 tree size

Scheme Wins− Wins Losses
Losses

PC 21 47 26
CFS 15 30 15

IG 13 29 16
RLF 7 25 18
CNS 6 26 20

WRP 0 22 22
C4.5 -62 6 68

Table 6 compares the size (number of nodes) of the trees produced by each
attribute selection scheme against the size of the trees produced by C4.5 with
no attribute selection. Smaller trees are preferred as they are easier to in-
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terpret. From Table 6 and the ranking given in Table 7 it can be seen that
principal components produces the smallest trees, but since accuracy is gener-
ally degraded it is clear that models using the transformed attributes do not
necessarily fit the data well. CFS is second in the ranking and produces smaller
trees than C4.5 on 11 data sets with a larger tree on one dataset. Information
gain, ReliefF and the Wrapper also produce smaller trees than C4.5 on 11 data
sets but by and large produce larger trees than CFS. Consistency produces
smaller trees than C4.5 on 12 data sets and never produces a larger tree. It
appears quite low on the ranking because it generally produces slightly larger
trees than the other schemes.

Table 8: Number of features selected for naive Bayes. Figures in brackets show
the percentage of the original features retained.

Data Set Orig IG RLF CNS PC CFS WRP
zoo 17 12.8(75%) 12.5 (74%) 16.3 (96%) 4.7 (28%) 13.6 (80%) 10.5 (62%)

heart-c 13 7.1 (55%) 8.6 (66%) 8.7 (67%) 3.6 (28%) 7.2 (55%) 8.7 (67%)
ionosphere 34 7.9 (23%) 8.1 (24%) 10.5 (31%) 18.1(53%) 12.6 (37%) 11.7 (34%)

soybean 35 30.9(88%) 31.3 (89%) 32.7 (93%) 36 (103%) 25.8 (74%) 20.8 (59%)
glass2 9 2.7 (30%) 3.2 (35%) 3.9 (44%) 4.5 (50%) 2.1 (24%) 1.9 (22%)

vote 16 1 (6%) 1.7 (11%) 2.6 (16%) 14.9(93%) 1 (6%) 3 (19%)
heart-stat 13 7.8 (60%) 9.2 (71%) 10.2 (79%) 2.6 (20%) 7.9 (61%) 10 (77%)

lymph 18 16.6(92%) 13.1 (73%) 14.3 (79%) 15.3(85%) 15 (84%) 13.1 (73%)
labor 16 12.1(75%) 13.6 (85%) 13.7 (86%) 4.3 (27%) 11.8 (74%) 9 (56%)

diabetes 8 2.7 (34%) 3.6 (45%) 4 (50%) 5.9 (74%) 2.8 (35%) 4.1 (53%)
breast-c 9 3.8 (42%) 7.4 (82%) 5.7 (63%) 5.2 (57%) 2.7 (30%) 3.2 (36%)
credit-g 20 13.2(66%) 14.3 (72%) 13.6 (68%) 19.9(100%) 12.4 (62%) 10.7 (53%)
segment 19 11 (58%) 11.1 (58%) 5 (26%) 15.2(80%) 7.9 (42%) 9.2 (48%)

horse colic 22 5.8 (26%) 4.1 (18%) 3.9 (18%) 22.8(104%) 5.8 (26%) 6.2 (28%)
anneal 38 10.1(27%) 3.7 (10%) 5.4 (14%) 38.9(103%) 7.1 (19%) 25.4 (67%)

Table 9: Wins versus losses for number of features selected for naive Bayes.

Scheme Wins− Wins Losses
Losses

CFS 24 42 18
IG 11 35 24

WRP 9 35 26
RLF -1 30 31
CNS -15 21 36
PC -28 21 49

Table 8 shows the average number of attributes selected by each scheme
for naive Bayes and Table 9 shows the “wins” versus “losses” ranking. Table
8 shows that most schemes (with the exception of principal components) re-
duce the number of features by about 50% on average. Principal components
sometimes increases the number of features. From Table 9 it can be seen that
CFS chooses fewer features compared to the other schemes—retaining around
48% of the attributes on average. The Wrapper, which was the clear winner
on accuracy, is third in the ranking—retaining just over 50% of the attributes
on average.
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Table 10 shows the average number of features selected by each scheme for
C4.5 and Table 11 shows the “wins” versus “losses” ranking. As to be expected,
fewer features are retained by the schemes for C4.5 than for naive Bayes. CFS
and the Wrapper retain about 42% of the features on average. ReliefF, which
was the winner on accuracy, retains 52% of the features on average. As was
the case with naive Bayes, CFS chooses fewer features for C4.5 than the other
schemes (Table 11). ReliefF is at the bottom of the ranking in Table 11 but its
larger feature set sizes are justified by higher accuracy than the other schemes.

Table 10: Number of features selected for C4.5. Figures in brackets show the
percentage of the original features retained.

Data Set Orig IG CFS CNS RLF WRP PC
zoo 17 11.4(67%) 9 (53%) 11.2 (66%) 10.5 (62%) 7.1 (42%) 10.5(62%)

heart-stat 13 3.2 (25%) 3 (23%) 3.6 (28%) 5.6 (43%) 4.6 (35%) 2.1 (16%)
ionosphere 34 12.2(36%) 6.9 (20%) 9.3 (27%) 8.7 (26%) 7.2 (21%) 10.2(30%)

diabetes 8 3.2 (40%) 3.4 (43%) 3.6 (45%) 3.9 (49%) 3.8 (47%) 5.9 (74%)
vote 16 11.6(72%) 9.6 (60%) 6.5 (40%) 10.6 (66%) 8.6 (54%) 11.2(70%)

credit-g 20 7.8 (39%) 6.7 (34%) 8.1 (41%) 9.1 (45%) 7.7 (39%) 3.9 (19%)
soybean 35 29.5(84%) 23.7 (68%) 35 (100%) 32.4 (93%) 19.2 (55%) 30.2(86%)
heart-c 13 3.9 (30%) 3.5 (27%) 4 (31%) 5.1 (39%) 5.9 (45%) 3.8 (29%)
glass2 9 4.2 (47%) 4.6 (51%) 4.4 (48%) 4.7 (52%) 4 (44%) 4.2 (47%)
labor 16 3.9 (24%) 2.8 (18%) 6.6 (41%) 6.5 (40%) 3.3 (21%) 3.5 (22%)

lymph 18 6.8 (38%) 5.3 (30%) 4 (22%) 4.5 (25%) 5.9 (33%) 9.2 (51%)
breast-c 9 4.4 (49%) 4 (44%) 6.6 (73%) 6.9 (77%) 3.98 (44%) 4.4 (49%)
segment 19 16.4(86%) 11.9 (63%) 9.5 (50%) 12.6 (66%) 9.2 (48%) 16.4(86%)

anneal 38 16.6(44%) 21.3 (56%) 15.5 (41%) 20.4 (54%) 18.2 (48%) 36.4(96%)

Table 11: Wins versus losses for number of features selected for C4.5

Scheme Wins− Wins Losses
Losses

CFS 24 35 11
WRP 13 30 17
CNS 2 26 24

IG -8 18 26
PC -8 17 25

RLF -23 11 34

It is interesting to compare the speed of the attribute selection techniques.
We measured the time taken (in milliseconds3) to select the final subset of
attributes. This includes the time taken to generate the ranking and the time
taken to cross validate the ranking to determine the best set of features. Table
12 shows the “wins” versus “losses” ranking for time taken to select attributes
for naive Bayes. CFS and information gain are much faster than the other
schemes. As expected, the Wrapper is by far the slowest scheme. Principal
components is also slow, probably due to extra data set pre-processing and the
fact that initial dimensionality increases when multi-valued discrete attributes
are present.

3This is a rough measure. Obtaining true cpu time from within a Java program is quite
difficult.
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Table 12: Wins versus losses for time taken to select attributes for naive Bayes.

Scheme Wins− Wins Losses
Losses

CFS 50 57 7
IG 49 56 7

CNS 13 38 25
RLF -10 29 39
PC -36 17 53

WRP -66 4 70

Table 13: Wins versus losses for time taken to select attributes for C4.5

Scheme Wins− Wins Losses
Losses

CNS 34 46 12
IG 29 42 13

CFS 25 40 15
RLF 12 36 24
PC -34 20 54

WRP -66 4 70

Table 13 ranks the schemes by the time taken to select attributes for C4.5.
It is interesting to note that the consistency method is the fastest in this case.
While consistency does not rank attributes as fast as information gain, speed
gains are made as a by-product of the quality of the ranking produced—with
C4.5 it is faster to cross validate a good ranking than a poor one. This is
because smaller trees are produced and less pruning performed early on in the
ranking where the best attributes are. If poorer attributes are ranked near the
top then C4.5 may have to “work harder” to produce a tree. This effect is not
present with naive Bayes as model induction speed is not affected by attribute
quality. Although ReliefF produces the best attribute rankings for C4.5, it is
not as fast as information gain. The instance-based nature of the algorithm
makes it quite slow to produce an attribute ranking.

5 Conclusions

This paper has presented a benchmark comparison of six attribute selection
techniques that produce ranked lists of attributes. The benchmark shows that
in general, attribute selection is beneficial for improving the performance of
common learning algorithms. It also shows that, like learning algorithms, there
is no single best approach for all situations. What is needed by the data miner
is not only an understanding of how different attribute selection techniques
work, but also the strengths and weaknesses of the target learning algorithm,
along with background knowledge about the data (if available). All these fac-
tors should be considered when choosing an attribute selection technique for
a particular application. For example, while the Wrapper using the forward
selection search was well suited to naive Bayes, using a backward elimination
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search (which is better at identifying attribute interactions) would have been
more suitable for C4.5.

Nevertheless, the results suggest some general recommendations. The wins
versus losses tables show that, for accuracy, the Wrapper is the best attribute
selection scheme, if speed is not an issue. Otherwise CFS, consistency and
ReliefF are good overall performers. CFS chooses fewer features, is faster and
produces smaller trees than the other two, but, if there are strong attribute
interactions that the learning scheme can use then consistency or ReliefF is a
better choice.
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